71 research outputs found

    A nonovershooting controller with integral action for multi-input multi-output drug dosing control

    Get PDF
    In this paper, a nonovershooting tracking controller is proposed for the continuous infusion of multiple drugs that have interactive effects. The proposed controller design method exploits the freedom of eigenstructure assignment pertinent to the design of feedback controllers for multi-input, multi-output (MIMO) systems. For drug dosing, a nonovershooting tracking controller restricts the undesirable side effects of drug overdosing. The proposed tracking controller is based on an estimate of the full state using a hybrid extended Kalman filter (EKF) that is used to reconstruct the system states from the measurable system outputs. An integral control action is included in the controller design to achieve robust tracking in the presence of patient parameter uncertainty. Simulation results and performance analysis of the proposed control strategy are also presented using 20 simulated patients. 2018Qatar National Research FundScopu

    Robust controller design: Recent emerging concepts for control of mechatronic systems

    Get PDF
    The recent industrial revolution puts competitive requirements on most manufacturing and mechatronic processes. Some of these are economic driven, but most of them have an intrinsic projection on the loop performance achieved in most of closed loops across the various process layers. It turns out that successful operation in a globalization context can only be ensured by robust tuning of controller parameter as an effective way to deal with continuously changing end-user specs and raw product properties. Still, ease of communication in non-specialised process engineering vocabulary must be ensured at all times and ease of implementation on already existing platforms is preferred. Specifications as settling time, overshoot and robustness have a direct meaning in terms of process output and remain most popular amongst process engineers. An intuitive tuning procedure for robustness is based on linear system tools such as frequency response and bandlimited specifications thereof. Loop shaping remains a mature and easy to use methodology, although its tools such as Hinf remain in the shadow of classical PID control for industrial applications. Recently, next to these popular loop shaping methods, new tools have emerged, i.e. fractional order controller tuning rules. The key feature of the latter group is an intrinsic robustness to variations in the gain, time delay and time constant values, hence ideally suited for loop shaping purpose. In this paper, both methods are sketched and discussed in terms of their advantages and disadvantages. A real life control application used in mechatronic applications illustrates the proposed claims. The results support the claim that fractional order controllers outperform in terms of versatility the Hinf control, without losing the generality of conclusions. The paper pleads towards the use of the emerging tools as they are now ready for broader use, while providing the reader with a good perspective of their potential

    A gain-scheduled PID controller for propofol dosing in anesthesia

    Get PDF
    6siA gain-scheduled proportional-integral-derivative controller is proposed for the closed-loop dosing of propofol in anesthesia (with the bispectral index as a controlled variable). In particular, it is shown that a different tuning of the parameters should be used during the infusion and maintenance phases. Further, the role of the noise filter is investigated.nonenonePadula, F.; Ionescu, C.; Latronico, N.; Paltenghi, M.; Visioli, A.; Vivacqua, G.Padula, Fabrizio; Ionescu, C.; Latronico, Nicola; Paltenghi, M.; Visioli, Antonio; Vivacqua, Giuli

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    Generalization of the FOPDT Model for Identification and Control Purposes

    No full text
    This paper proposes a theoretical framework for generalization of the well established first order plus dead time (FOPDT) model for linear systems. The FOPDT model has been broadly used in practice to capture essential dynamic response of real life processes for the purpose of control design systems. Recently, the model has been revisited towards a generalization of its orders, i.e., non-integer Laplace order and fractional order delay. This paper investigates the stability margins as they vary with each generalization step. The relevance of this generalization has great implications in both the identification of dynamic processes as well as in the controller parameter design of dynamic feedback closed loops. The discussion section addresses in detail each of this aspect and points the reader towards the potential unlocked by this contribution

    Modelling mechanical properties in native and biomimetically formed vascular grafts

    No full text
    The paper presents a detailed analysis of experimental data in order to characterize the elastic properties of arteries. Such analysis Would provide a good basis for evaluation of biomimetic vascular grafts. Since the latter needs to exhibit similar properties of native tissue, it is important to accurately characterize the biomimetic sample in a large range of applied stresses. The stress-strain properties vary according to the specific pathology (e.g. arteriosclerosis, aneurism) and the tissue graft must be chosen correctly. Two models are proposed in this paper on the stress-strain characteristics. An extension for frequency-domain analysis is provided for one of the models. The comparison between vascular grafts and native tissue for carotid and thoracic arteries in pigs are in good agreement with results from literature. The proposed experimental method offers suitable parameters for identifying models which characterize both elasticity and stiffness properties of the analyzed tissues (stress-strain). The proposed models show good performance in characterizing the intrinsic material properties

    A robust auto-tuning PID controller design based on S-shaped time domain response

    No full text
    In this study, a revisited improved approach of an initial frequency response based autotuner is proposed to enable PID controller design based on S-shaped step response data. In prior autotuner, the critical frequency value is found using relay test whereas process frequency response and its derivative at this frequency are calculated via the sine test. With the proposed approach, these values are estimated using the first order plus time delay models, which are employed to characterize S-shaped step response. Firstly, an identification method is used to find the model parameters, i.e. time constant T and delay time L. Secondly, the required values are estimated using the first order plus time delay model. The remaining tuner design steps are the same as in the prior autotuner. The simulations are performed on four different types of dynamical systems to show effectiveness of the proposed approach. The simulation results suggest that the performance of the control system using the proposed approach improves in terms of achievable performance indicators such as overshoot and settling time
    • …
    corecore